Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Korean Circulation Journal ; : 72-84, 2020.
Article in English | WPRIM | ID: wpr-786209

ABSTRACT

BACKGROUND AND OBJECTIVES: We aim to explore the additional discriminative accuracy of a deep learning (DL) algorithm using repeated-measures data for identifying people at high risk for cardiovascular disease (CVD), compared to Cox hazard regression.METHODS: Two CVD prediction models were developed from National Health Insurance Service-Health Screening Cohort (NHIS-HEALS): a Cox regression model and a DL model. Performance of each model was assessed in the internal and 2 external validation cohorts in Koreans (National Health Insurance Service-National Sample Cohort; NHIS-NSC) and in Europeans (Rotterdam Study). A total of 412,030 adults in the NHIS-HEALS; 178,875 adults in the NHIS-NSC; and the 4,296 adults in Rotterdam Study were included.RESULTS: Mean ages was 52 years (46% women) and there were 25,777 events (6.3%) in NHIS-HEALS during the follow-up. In internal validation, the DL approach demonstrated a C-statistic of 0.896 (95% confidence interval, 0.886–0.907) in men and 0.921 (0.908–0.934) in women and improved reclassification compared with Cox regression (net reclassification index [NRI], 24.8% in men, 29.0% in women). In external validation with NHIS-NSC, DL demonstrated a C-statistic of 0.868 (0.860–0.876) in men and 0.889 (0.876–0.898) in women, and improved reclassification compared with Cox regression (NRI, 24.9% in men, 26.2% in women). In external validation applied to the Rotterdam Study, DL demonstrated a C-statistic of 0.860 (0.824–0.897) in men and 0.867 (0.830–0.903) in women, and improved reclassification compared with Cox regression (NRI, 36.9% in men, 31.8% in women).CONCLUSIONS: A DL algorithm exhibited greater discriminative accuracy than Cox model approaches.TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02931500


Subject(s)
Adult , Female , Humans , Male , Artificial Intelligence , Cardiovascular Diseases , Cohort Studies , Follow-Up Studies , Insurance, Health , Learning , Mass Screening , National Health Programs
2.
Korean Circulation Journal ; : 72-84, 2020.
Article in English | WPRIM | ID: wpr-832992

ABSTRACT

BACKGROUND AND OBJECTIVES@#We aim to explore the additional discriminative accuracy of a deep learning (DL) algorithm using repeated-measures data for identifying people at high risk for cardiovascular disease (CVD), compared to Cox hazard regression.@*METHODS@#Two CVD prediction models were developed from National Health Insurance Service-Health Screening Cohort (NHIS-HEALS): a Cox regression model and a DL model. Performance of each model was assessed in the internal and 2 external validation cohorts in Koreans (National Health Insurance Service-National Sample Cohort; NHIS-NSC) and in Europeans (Rotterdam Study). A total of 412,030 adults in the NHIS-HEALS; 178,875 adults in the NHIS-NSC; and the 4,296 adults in Rotterdam Study were included.@*RESULTS@#Mean ages was 52 years (46% women) and there were 25,777 events (6.3%) in NHIS-HEALS during the follow-up. In internal validation, the DL approach demonstrated a C-statistic of 0.896 (95% confidence interval, 0.886–0.907) in men and 0.921 (0.908–0.934) in women and improved reclassification compared with Cox regression (net reclassification index [NRI], 24.8% in men, 29.0% in women). In external validation with NHIS-NSC, DL demonstrated a C-statistic of 0.868 (0.860–0.876) in men and 0.889 (0.876–0.898) in women, and improved reclassification compared with Cox regression (NRI, 24.9% in men, 26.2% in women). In external validation applied to the Rotterdam Study, DL demonstrated a C-statistic of 0.860 (0.824–0.897) in men and 0.867 (0.830–0.903) in women, and improved reclassification compared with Cox regression (NRI, 36.9% in men, 31.8% in women).@*CONCLUSIONS@#A DL algorithm exhibited greater discriminative accuracy than Cox model approaches.TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02931500

SELECTION OF CITATIONS
SEARCH DETAIL